If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2+4t-20=0
a = 16; b = 4; c = -20;
Δ = b2-4ac
Δ = 42-4·16·(-20)
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-36}{2*16}=\frac{-40}{32} =-1+1/4 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+36}{2*16}=\frac{32}{32} =1 $
| 9=4z-11 | | 1.3333+y=1 | | -0.7x^2+0.4x+2=0 | | x=500-500x+100x^2-5x^2 | | 3(x^2-2x)=3x^2 | | 13x=52. | | 161+2h=921 | | 8p-(3+p)=12 | | 11x-5x(x+2)=6x+5 | | 5(2x-5)=7(x+3)-19 | | 5p^2=21p-4 | | 5x-2x+x=-3 | | 1-4d=3 | | X+x(.43)=1108 | | 1092=6(x+18) | | 5p+2(p+1)=12 | | 3x=5,2 | | n÷8=9 | | 8(p+3)-3p=+(p+1)-12 | | 5x-(x+2)=3-2(x+1) | | 7x+7=3x+6+3x+21 | | -53+7x=66 | | 6(r-3)=3r+25 | | h+40=37 | | 16-(2y-8)=y^2-9y-6 | | 9x+10(7)=-16 | | 5x+4=(x+13)+(3x+5) | | -4(2)-2y=-2 | | q÷7=0 | | 6r+12=2r-19 | | -3-9(x-2)=4(3x+3)+7 | | -2x-(-2x-2)=7 |